
Autoloading & Namespaces

2

Autoloading and Namespaces

Jonathan Daggerhart
- Developer at Hook 42
- Organizer for Drupal Camp Asheville

Drupal.org: daggerhart
Twitter: @daggerhart
Blog: https://www.daggerhart.com

Drupal Camp Asheville
Site: https://drupalasheville.com
Twitter: @drupalasheville

https://www.daggerhart.com
https://drupalasheville.com

3

Autoloading and Namespaces

1. Autoloading - configuring PHP to automatically load
classes as they are instantiated

2. Namespaces - encapsulating a set of values and
methods, or a class

3. PSR-4 - the PHP standard for autoloading that leverages
namespaces

4. Composer Autoloading - including the composer
generated autoloader

What we will cover

4

Autoloading and Namespaces
What is autoloading & what problem does it solve?

Autoloading is a way to have PHP automatically include the PHP
class files of a project.

Consider an OOP PHP project that has more hundreds of PHP classes. How might we
make sure that all our classes are loaded before using them?

The Problem:

5

Autoloading and Namespaces

What if we could have PHP automatically load class files when we
need it? We can, we only need to two things:

1. Write a function that looks for files based on a given Class name

2. Register that function with the PHP core spl_autoload_register() function

Autoloading - The Solution

The Solution:

6

Autoloading and Namespaces
Autoloading - The Results

With a working registered autoloader, PHP will now automatically
include a class file as we instantiate the class.

How it works: assume we attempt to instantiate a new Bear object

$bear = new BlackBear();

1. PHP will run our autoload function: my_custom_autoloader()

2. Our autoloader will look for the file: ./includes/BlackBear.php

3. If found, our autoloader will require_once() that file

4. PHP will instantiate the object, and continue

7

Autoloading and Namespaces
Autoloading - All together

1. Autoloader function

2. Register new function

3. Instantiate object, without
explicitly requiring the class
file:
includes/BlackBear.php

8

Autoloading and Namespaces
What are Namespaces?

Namespaces are a way to encapsulate items. A very easy (and
somewhat practical) way of thinking of this is like an operating
system's directory structure, in that folders “encapsulate” the files
and folders within them.

quote php.org: As a concrete example, the file foo.txt can exist in both
directory /home/greg and in /home/other, but two copies of
foo.txt cannot co-exist in the same directory. In addition, to
access the foo.txt file outside of the /home/greg directory,
we must prepend the directory name to the file name using
the directory separator to get /home/greg/foo.txt.

9

Autoloading and Namespaces
Namespaces - How to

To “namespace” our class, we must use the namespace keyword
at the top of our PHP file.

“Namespace”d class: Accessing namespace for instantiation:

10

Autoloading and Namespaces
Namespaces - What problem do they solve?

To answer this question, we need to look back in time to a PHP
without namespaces. Previous to PHP version 5.3, we could not
encapsulate our classes, therefore they were always at risk of
conflicting with another class of the same name.

It was (and still is to some degree) not uncommon to prefix class
names resulting in something more like this:

That’s a lot.
No one wants
to write that
much code.

11

Autoloading and Namespaces
Namespaces - Solving a problem…
But given the previous example, we could change all those prefixes
into namespaces and end up with a class defined like this:

And we would instantiate it using its namespace:

But wait, is that actually better? Looks very similar in length to-- Hmm… there
must be more
to it than that.

12

Autoloading and Namespaces
Namespaces - the “use” keyword

The use keyword in PHP “imports” the given namespace into the
scope of the current file.

quote php.org: This is similar to the ability of unix-based file systems to
create symbolic links to a file or to a directory.

Example:

Import
namespace
into scope

Use the class
without global
name

13

Autoloading and Namespaces
Namespaces - Syntax

Still working with the “file folders” analogy, namespaces can have
both relative and absolute paths. Like a file system, to access a
namespaced class from anywhere (global / absolute), we must
prefix it with a backslash:

Alternatively when we import a namespace with the use
keyword, we do not add a prefix slash when instantiating it:

No prefix
slash

14

Autoloading and Namespaces
Namespaces - Extended example

Import the desired
namespaces

Both Loader()
and Render()
are accessed relative
to the imported
namespaces

Now that we know autoloading and namespaces, next we’ll
put them together to form Voltron PSR-4!

Awesome!

15

Autoloading and Namespaces
PHP Standard Recommendation (PSR) 4

PHP Standard Recommendation 4 (PSR-4) is a commonly used
pattern for organizing a PHP project so that the namespace for a
class matches the relative file path to the file of that class.

For example, if we are working within a project that makes use of
PSR-4 and we are dealing with a namespaced class like this:
\MyApp\TemplateEngine\Loader();

We can be sure that the file for that class can be found in this
relative location within the file system:
<relative root>/MyApp/TemplateEngine/Loader.php

16

Autoloading and Namespaces
PSR-4 - How does it work?

PSR-4 leverages the two techniques we’ve mentioned, autoloading
and namespaces. In fact, the autoloader implementation can be
pretty simple to start.

Replace
backslashes in
class namespace
with forward slashes
(like a file system)

Autoloader:

17

Autoloading and Namespaces
PSR-4 - Autoloader walkthrough

1. TemplateEngine\Loader()
instantiated

2. Absolute class name (including
namespace) is passed into the autoloader
TemplateEngine\Loader

3. Autoloader converts backslashes to
forward slashes
TemplateEngine/Loader

4. Look for a file in roughly that location, and
include it if found
src/TemplateEngine/Loader.php

18

Autoloading and Namespaces
Composer - PHP Package manager

Composer is a command line PHP package manager. You may
have seen a project before with a composer.json file in its root
directory. This file tells Composer about our project, including our
project's dependencies.

Simple composer.json example:

{
 "name": "dcavl/example",
 "description": "This is an example composer.json file",
 "require": {
 "twig/twig": "^1.24"
 }
}

19

Autoloading and Namespaces
Composer - Dependency Management

{
 "name": "dcavl/example",
 "description": "An example",
 "require": {
 "twig/twig": "^1.24",
 "guzzlehttp/guzzle": "^6.2"
 }
}

composer.json
We can add new dependencies to our
project with the following command:

 $ composer require <vendor name>/<package>

Example: Twig

 $ composer require twig/twig

Example: Guzzle

 $ composer require guzzlehttp/guzzle

 composer require will automatically update our composer.json file.

20

Autoloading and Namespaces
Composer Autoloading

Yes, composer will generate an autoloader for our project
dependencies, and place an “autoload.php” file in the root of the
“vendor” folder. Simply include that file, and we’re ready to go:

1. Include generated
autoloader

2. Begin using classes
immediately, without
including any more files

21

Autoloading and Namespaces
Composer require - results

Note:

● All dependencies will be placed in the
“vendor” folder of our project.

● If one of our project dependencies has its own
dependencies, composer will bring those in as
well.

● Composer will generate a PSR-4 autoloader
for our dependencies.

Project files:

“Generate an autoloader” you say. That seems
relevant. Hmmm….

22

Autoloading and Namespaces
What this means: PSR-4 & Drupal 8

Now that we understand what is going on behind the scenes with autoloading,
namespaces, and composer, we are ready to find anything we need within
Drupal 8. There are just a few things to keep in mind.

● Drupal core’s base directory for autoloading is the /core/lib/Drupal folder

● Drupal core modules use the following base directory pattern:

/core/modules/<module name>/src/

● Drupal core’s dependencies use the standard composer base directory:

/vendor/ (outside of the /core folder)

● Site modules use the following base directory pattern:

/modules/<module name>/src/

23

Autoloading and Namespaces
Drupal Core Classes & Where They Live

Let’s look at a few examples of finding classes within Drupal core
based on their namespace:

Drupal Namespaced Class Class File Location

\Drupal\Core\Block\BlockBase core/lib/Drupal/Block/BlockBase.php

\Drupal core/lib/Drupal/Drupal.php

\Drupal\Core\Field\FormatterBase core/lib/Drupal/Field/FormatterBase.php

\Drupal\rest\Plugin\ResourceBase core/modules/rest/src/Plugin/ResourceBase.php

24

Autoloading and Namespaces
Drupal Module Autoloading

Drupal core assists the autoloader in finding classes for modules
during the registry build. Module classes are expected to be within a
directory named “src” within the module folder.

Behind the scenes

Drupal informs the
autoloader where to
look for module
namespaces.

25

Autoloading and Namespaces
Drupal Module Class Namespaces

The autoloader expects classes provided by modules to be placed within a
folder named “src” within the module, and their namespaces begin with
“Drupal\<module_name>\”.

\Drupal\<module_name>\(dir\)Class (core/)modules/<module_name>/src/(dir/)Class.php

\Drupal\block\Entity\Block core/modules/block/src/Entity/Block.php

\Drupal\node\Form\NodeDeleteForm core/modules/node/src/Form/NodeDeleteForm.php

\Drupal\flag\Entity\Flag modules/contrib/flag/src/Entity/Flag.php

\Drupal\key\Form\KeyEditForm modules/contrib/key/src/Form/KeyEditForm.php

